Gene Selection for Cancer Classification Using Bootstrapped Genetic Algorithms and Support Vector Machines

نویسنده

  • Xue-wen Chen
چکیده

The gene expression data obtained from microarrays have shown useful in cancer classification. DNA microarray data have extremely high dimensionality compared to the small number of available samples. In this paper, we propose a novel system for selecting a set of genes for cancer classification. This system is based on a linear support vector machine and a genetic algorithm. To overcome the problem of the small size of training samples, bootstrap methods are combined into genetic search. Two databases are considered: the colon cancer database and the leukemia database. Our experimental results show that the proposed method is capable of finding genes that discriminate between normal cells and cancer cells and generalizes well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

تعیین ماشین‌های بردار پشتیبان بهینه در طبقه‌بندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک

Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Gene selection based on multi-class support vector machines and genetic algorithms.

Microarrays are a new technology that allows biologists to better understand the interactions between diverse pathologic state at the gene level. However, the amount of data generated by these tools becomes problematic, even though data are supposed to be automatically analyzed (e.g., for diagnostic purposes). The issue becomes more complex when the expression data involve multiple states. We p...

متن کامل

Finding expressed genes using genetic algorithms and support vector machines

The gene expression data obtained from microarrays have shown useful in cancer classification. DNA microarray data have extremely high dimensionality compared to the small number of available samples. An important step in microarray studies is to remove genes irrelevant to the learning problem and to select a small number of genes expressed in biological samples under specific conditions. We pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003